Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Over the last decade, collaborative efforts in plant evolutionary research have elucidated the phylogenetic relationships in the green plant lineage and provided insights into the emergence of land plants from a group of terrestrial and freshwater streptophyte algae. A foremost finding was that the genetic underpinnings of several key traits emerged much earlier than land plants — they were present in their streptophyte algal pro- genitors. Currently, the field is at a crossroads, transitioning from genomics-informed descriptions of strep- tophyte algae to a functional understanding of molecular mechanisms underlying their unique physiology, as well as to understanding their origin and evolution. Major progress has been made in the development of valuable genomic resources, new tools and new model systems in streptophyte algae. In this review, we high- light community-developed resources to study these closest algal relatives of land plants to gain insights into the evolution of land plant traits.more » « lessFree, publicly-accessible full text available July 1, 2026
-
null (Ed.)Cytokinesis in land plants involves the formation of a cell plate that develops into the new cell wall. Callose, a β-1,3 glucan accumulates at later stages of cell plate development presumably to stabilize this delicate membrane network during expansion. Cytokinetic callose is considered specific to multicellular plant species, as it has not been detected in unicellular algae. Here we present callose at the cytokinesis junction of the unicellular charophyte, P. margaritaceum. Callose deposition at the division plane of P. margaritaceum showed distinct, spatiotemporal patterns likely representing distinct roles of this polymer in cytokinesis. Pharmacological inhibition by Endosidin 7 resulted in cytokinesis defects, consistent with the essential role for this polymer in P. margaritaceum cell division. Cell wall deposition at the isthmus zone was also affected by the absence of callose, demonstrating the dynamic nature of new wall assembly in P. margaritaceum. The identification of candidate callose synthase genes provides molecular evidence for callose biosynthesis in P. margaritaceum. The evolutionary implications of cytokinetic callose in this unicellular Zygnematopycean alga is discussed in the context of the conquest of land by plants.more » « less
-
Abstract The extracellular matrix (ECM) of many charophytes, the assemblage of green algae that are the sister group to land plants, is complex, produced in large amounts, and has multiple essential functions. An extensive secretory apparatus and endomembrane system are presumably needed to synthesize and secrete the ECM, but structural details of such a system have not been fully characterized. Penium margaritaceum is a valuable unicellular model charophyte for studying secretion dynamics. We report that Penium has a highly organized endomembrane system, consisting of 150–200 non-mobile Golgi bodies that process and package ECM components into different sets of vesicles that traffic to the cortical cytoplasm, where they are transported around the cell by cytoplasmic streaming. At either fixed or transient areas, specific cytoplasmic vesicles fuse with the plasma membrane and secrete their constituents. Extracellular polysaccharide (EPS) production was observed to occur in one location of the Golgi body and sometimes in unique Golgi hybrids. Treatment of cells with brefeldin A caused disruption of the Golgi body, and inhibition of EPS secretion and cell wall expansion. The structure of the endomembrane system in Penium provides mechanistic insights into how extant charophytes generate large quantities of ECM, which in their ancestors facilitated the colonization of land.more » « less
-
Summary Tomato (Solanum lycopersicum) fruit ripening is regulated co‐operatively by the action of ethylene and a hierarchy of transcription factors, includingRIPENING INHIBITOR(RIN) andNON‐RIPENING(NOR). Mutations in these two genes have been adopted commercially to delay ripening, and accompanying textural deterioration, as a means to prolong shelf life. However, these mutations also affect desirable traits associated with colour and nutritional value, although the extent of this trade‐off has not been assessed in detail. Here, we evaluated changes in tomato fruit pericarp primary metabolite and carotenoid pigment profiles, as well as the dynamics of specific associated transcripts, in therinandnormutants during late development and postharvest storage, as well of those of the partially ripeningdelayed fruit ripening(dfd) tomato genotype. These profiles were compared with those of the wild‐type tomato cultivars Ailsa Craig (AC) and M82. We also evaluated the metabolic composition of M82 fruit ripened on or off the vine over a similar period. In general, thedfdmutation resulted in prolonged firmness and maintenance of quality traits without compromising key metabolites (sucrose, glucose/fructose and glucose) and sectors of intermediary metabolism, including tricarboxylic acid cycle intermediates. Our analysis also provided insights into the regulation of carotenoid formation and highlighted the importance of the polyamine, putrescine, in extending fruit shelf life. Finally, the metabolic composition analysis of M82 fruit ripened on or off the vine provided insights into the import into fruit of compounds, such as sucrose, during ripening.more » « less
An official website of the United States government
